Base Realignment and Closure (BRAC) Cleanup Team Workshop

Innovative Technology

Clifton C. Casey, P.E.

Southern Division NAVFAC

Environmental Technical Support Branch

Phone: (843) 820-5562

E-mail: cccasey@efdsouth.navfac.navy.mil

NSB Kings Bay The Use of Natural Attenuation to Select Source Reduction Targets for an In-situ Chemical Oxidation Project

Site 11- Sanitary Landfill

- Domestic Waste
- 1974-1981
- Residential Area west of Landfill

Site 11- Sanitary Landfill

• RFI

- PCE source area (3 4 ppm)
- PCE/TCE/DCE/VCplume

Adjacent Residential Area

- 630 Homes
- Groundwater
 - not drinking water
 - used for lawnirrigation, washingcars, etc

Chlorinated Solvents Migration

- Landfill source area 3-4 ppm PCE
- Roadway ROW DCE and VC from 1 170 ppb
- Subdivision -- 2-3 ppb
 DCE

Interim Measure

- Pump and Treat for containment
- 3 wells between landfill and subdivision

Additional Measures

- Full capture uncertain
- State requests additional wells, discusses capping
- Navy reviews source reduction techniques and natural attenuation
 - groundwater extraction
 - in-well stripping
 - chemical oxidation

Redox Conditions

- Landfill Sulfate
 reducing -- effective
 reductive
 dechlorination of PCE,
 TCE
- Downgradient Iron reducing -- microbial oxidation of DCE, VC
- Efficient attenuating system
- Lacks distance

Solute Transport Equation

dC/dt = D d2C/dx2 - v dC/dx - SCn - kC

Source Concentration Reduction

- Design
- Uncertainty
 - Variability of source concentrations
 - Uncertainty and variation of groundwater flow rates
 - Uncertainty of concentrations due to sampling
 - Deviations from steady-state
- Safety factor

Fentons Chemistry

$$H_2O_2 + Fe^{2+} \Rightarrow Fe^{3+} + OH^- + OH^-$$

Injection wells are carefully targeted into thin DNAPL accumulation zone

Using a robust pattern of overlapping injection, peroxide and iron II are added to "burn" the DNAPL source in the ground

Technology Selection

Source Zone

Characteristics: High contaminant concentrations

Need: Aggressive remediation technologies to limit long term environmental damage

Examples: In situ destruction, aggressive immobilization

Specific technology: in situ chemical oxidation (Fenton's Chemistry)

Technology Selection

Primary Groundwater Plume

Characteristics: Moderate to high dissolved concentrations

Need: Baseline technologies or moderately aggressive alternatives

Specific technology: Pump & treat

Technology Selection

Dilute Plume / Fringe

Characteristics: Low dissolved concentrations

Need: Innovative technologies ... sustainable low energy concepts

Examples: Intrinsic remediation, bioremediation, geochemical

stabilization

Specific technology: Monitored natural attenuation

Exit Strategy

- Aggressive source reduction with chemical oxidation (2 to 3 months)
- Continue pump and treat intermediate plume area for about a year
- Turn off pump and treat and monitor for natural attenuation

Benefits

- Reducing source concentration to calculated levels helps ensure natural attenuation processes are effective
- Source reduction and monitored natural attenuation consistent with new EPA guidance
- More efficient and effective than traditional P&T and other methods
- Saves time and money protective of human health and environment